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During manufacturing processes of thin materials such as paper, photographic film, and
magnetic film, which are handled as continuous sheets and subjected to drying air-flows, the
interaction of the air with the web can cause the free edges to vibrate violently. This
phenomenon is related to the waving motion of a flag in the wind, except that the thin films
under consideration are under tension in the direction of the air-flow or at right angles to it. A
travelling-wave analysis was done based on incompressible potential-flow theory; the critical
flow speed, wave speed, wavelength, and flutter frequency were predicted. A closed-form
solution of the critical flow speed is suggested. Experiments were carried out with stationary
thin films mounted in a wind tunnel where the direction of tension was perpendicular to the
flow direction. It was shown that the analysis, which assumes that the film is infinitely long in
the flow direction, could successfully predict the critical flow speed above which violent edge
vibrations occur. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

1.1. Problem Definition

In manufacturing processes involving continuous sheets or webs of material, interaction of
the material with the surrounding air dominates the out-of-plane dynamics of the web: the
hydrodynamic mass effect (Lamb 1932) exceeds the mass of the sheet for all but the
shortest wavelengths. If air is blown along the web for the purpose of drying, the web may
become unstable and deflect out-of-plane. The present study investigates the stability
limits when air blows from the center-line of the web towards the free edges.

1.2. Relevance

In papermaking, a sheet of paper 6–10m in width is formed by removing excess water
from slurry of fibers by mechanical means. The wet paper travels through a series of dryers
1 000–2 000m/min, supported by felts. For effective drying of the fabric, the paper web is
889-9746/02/070989+20 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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often separated from the felts between drying rollers, as shown in Figure 1. The
unsupported span occasionally breaks, resulting in the production loss while the machine
is rethreaded. The break can often be traced back to violent vibrations of the paper edges.
The felt rollers are sometimes relocated such that the felts can give partial support to the

paper span. However, in the wedge-shaped spaces near rollers, positive or negative
pressures are developed due to the velocity of the webs and the rollers, causing the paper to
separate from the felt. To reduce the separation, blow boxes, with slots along the full width
of the web, blow drying air against the paper. Excess air departs through the sides of the
machine, leading to a cross-machine direction (CMD) air-flow. Figure 2 is a simplified
view of a moving web subjected to air flowing towards the edges. In real-world situations,
the air-flow is not uniform and the flow field is three-dimensional.
While paper nonuniformity, tension fluctuations, and turbulence may all contribute to

web breaks, we will demonstrate that a flow-induced instability is the fundamental cause
of edge flutter. Increased machine speed and drying air-flow both increase aerodynamic
effects and the risks of flutter, breaks, and downtime. Increased tension reduces flutter, but
can itself be a cause of tearing. Gauging these trade-offs, maximizing productivity, and
improving drying-air management, all require a theory for predicting the incidence of
severe flutter.
Drying
roller
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Figure 1. Paper web in dryer section.
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Figure 2. Simplified view of a moving web subjected to a flow field.
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1.3. Background

A number of closely related flutter phenomena have been investigated in the past, as
summarized below. The first two of them are typical problems observed in paper making
or paper converting processes.

1.3.1. Flutter due to parallel flow

When the air-flow is parallel (i.e., machine direction or MD) to a long, narrow web (e.g., in
the ink-drying section of printing plants), the governing equation for long-wave out-of-
plane motions is similar in form to the thread-line equation (Moretti 1999)

A
@2w

@t2
� 2B

@2w

@t@x
� C

@2w

@x2
¼ Fðt;xÞ; ð1Þ

but the coefficient A includes both web mass and hydrodynamic inertia; the Coriolis
coefficient B includes both web velocity and air velocity terms; and the apparent-tension
coefficient C includes web, air, and tension terms (Chang et al. 1991). If B is negative, it
can be made positive by choosing the x-coordinate direction appropriately; and the
magnitudes of A and C can be brought to unity by rescaling the coordinates x and/or t, so
that the equation reduces to

.wwþ 2b ’ww0 � w00 ¼ f ; ð2Þ

where b ¼ B
ffiffiffiffiffiffiffiffiffiffi
jACj

p
. If the apparent-tension coefficient C is positive, the negative sign

prevails for the third term, and the system is stable. Because of the mixed derivative, the
fundamental free-vibration solution has the form (Chang & Moretti, 1991)

w
 ¼ sinðx
Þ cos t
 þ
bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p x


 !
; ð3Þ

where x
 and t
 are dimensionless.
However, if the air velocity is sufficient to make the apparent-tension-coefficient C

negative, the positive sign prevails for the third term, and the solution is steadily divergent,
with the web bulging towards positive or negative w. At even higher velocities, an
oscillatory instability is observed (Chang et al. 1991).

1.3.2. Flutter due to cross-flow

When the air-flow is towards the edge of a wide web (i.e., in the CMD), the material
velocity and the air velocity are at right angles to each other. Early experiments (Chang &
Moretti 1992) used a stationary web. It was demonstrated that the web vibration is not due
to random turbulence, but shows the well-defined critical velocity, characteristic of flutter
phenomena. The stroboscopically observed waves travelled in the direction of the flow,
and increased in amplitude towards the edge.
Further experiments were carried out with a moving web traversing a wind tunnel, with

the upstream edge protected from the air-flow (Chang et al. 1999). Simultaneous laser
vibrometer measurements at two points were correlated to obtain travelling-wave
information (Moretti et al. 1994). At the velocities tested, air velocity effects dominated,
relative to web-translation effects.

1.3.3. Flag flutter

Flag flutter is similar to the low-tension (i.e., slack edge) limiting case of edge flutter. Note,
however, that there are several major differences between flag flutter and edge flutter. One
major difference is that, for the edge flutter discussed in this paper, only the downstream
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edge of the web is free while flags have three free edges. The air-flow around the two free
edges along the flow direction has a significant effect on the dynamics of a flag. Even
among the flag models, there are many major differences. Those study-models include
cantilevered vertical plates that are clamped at the upstream top end and free on other
three edges (Datta & Gottenberg 1975), cantilevered horizontal plates with three
unconstrained edges (Yamaguchi et al. 2000a), membranes hanging vertically on piano
wires with three unconstrained edges (Taneda 1968; Uno 1973), half-infinite plates with
free trailing edges (Yamaguchi et al. 2000b), and a half-infinite membrane with free
trailing edge and subjected to tension in the flow direction (Sparenberg 1962). Fairthorne
(1930) demonstrated that the interaction of the air with the waving flag generates drag
forces, and Thoma (1939) pointed out that the oscillatory motion of a flag creates
intermittent tension due to the centrifugal forces on the leech edge of the flag.

1.3.4. Panel flutter

Aeroelastic panel flutter (Dowell 1966; Oyibo 1983) resembles web flutter, except for the
greater importance of stiffness versus tension, the difference in typical boundary
conditions, and, in the supersonic case, the shift from second-derivative-dependent
pressure forces to first-derivative terms.

2. ANALYSIS

2.1. Study Model

The dynamics of a moving web is modelled as shown in Figure 3. The support rollers are
modelled as infinite baffles perpendicular to the moving web, the web is assumed to be
subjected to a uniform air-flow in the cross-direction moving from the center-line of the
web to its free edges, and the effect of the air-flow in the machine direction is ignored.

2.2. Governing Equations

The governing equation of the out-of-plane motion of a translating web (thin and
continuous material) is

m
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Figure 3. Schematic of the study model.
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where (Graff 1975)

Dx ¼
Exh

3

12ð1� nxnyÞ
; Dy ¼

Eyh
3

12ð1� nxnyÞ
and Dxy ¼ Dxny þ

Gh3

6
: ð5Þ

As sketched in Figure 4, it is assumed that a travelling-wave-type flutter occurs along
the flow direction (the y direction or CMD), the effect of the reflected wave at the
downwind edge is negligible, the shape of web deflection along the longitudinal direction
(machine direction) is sinðpx=LÞ, and the wavelength is much smaller than the width of the
web (l=d551), and web tension is uniform. Under these assumptions the shape of web
deflection can be expressed as

w ¼ #ww sin
px
L

� �
eiðot�kyÞ ¼ #ww sin

px
L

� �
eikðct�yÞ: ð6Þ

If the wavenumber k is a complex number with positive imaginary component, the system
is said unstable because the amplitude of the web increases with y; if the angular frequency
o is a complex number with negative imaginary component, the system is unstable because
the wave amplitude increases with time without limit. It is assumed in this analysis that the
wavenumber is a real number, but the angular frequency (and so the phase speed) can be a
complex number. By substituting equation (6) into equation (4), we obtain

A� #wweið2p=lÞðct�yÞ sin
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L

� i 2mUweb
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� pþ þ p� ¼ 0; ð7Þ
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The aerodynamic pressure on the web is expressed by the Bernoulli equation,

p� ¼ � r
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þ Vair
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z¼0�

: ð8Þ
Figure 4. Assumed pattern of flutter.
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The velocity potential should satisfy

r2f�
1

a2
@

@t
þ Vair

@

@y

� �2
f ¼ 0: ð9Þ

2.3. Boundary Conditions

The boundary condition of the velocity potential on the web surface is

@f
@z

����
z¼0�

¼
@w

@t
þ Vair

@w

@y
; 05x5L: ð10Þ

If the supports of the web are assumed to be infinite walls perpendicular to the web as
shown in Figure 3, there must be no flow in the x direction (longitudinal or machine
direction) at x ¼ 0 and x ¼ L. If we ignore the air-flow in the longitudinal direction
(windage caused by the translational motion of the web), the condition for the velocity
potential is

@f
@x

¼ 0 for x ¼ 0 or x ¼ L: ð11Þ

2.4. Velocity Potential

The velocity potential should have the form

fðx; y; z; tÞ ¼ #ffðx; zÞ eið2p=lÞðct�yÞ: ð12Þ

Substitution of equation (12) into equation (9) yields

@2 #ff
@x2

þ
@2 #ff
@z2

�
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a

� �2" #
#ff ¼ 0: ð13Þ

Let #ffðx; zÞ ¼ XðxÞZðzÞ, then the above equation becomes

X 00

X
þ

Z00

Z
�
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a

� �2" #
¼ 0: ð14Þ

Let X 00=X ¼ �r2. If we assume r > 0, the function X becomes X ¼ A1e
irx þ A2e

�irx.
Furthermore, let Z00=Z � q2 ¼ 0, where

q2 ¼ r2 þ
2p
l

� �2
1�

Vair � c

a

� �2" #
; ð15Þ

the real component of which is positive. The general solution to the equation Z00=Z � q2 ¼
0 is Z ¼ A3e

qz þ A4e
�qz. For positive z, Z ¼ A4e

�qz, so that
#ffðx; zÞ ¼ e�qzðA1eirx þ A2e

�irxÞ. By considering the boundary condition at x ¼ 0 (which
is @f=@x ¼ 0), the velocity potentional is obtained to be #ffðx; zÞ ¼ Ae�qz cosðrxÞ. At x ¼ L,
@f=@x ¼ 0, so that sinðrLÞ ¼ 0. From which, rn ¼ np=L, where n is a positive integer.
Equation (15) now becomes

qn ¼
p
L

n2 þ
2L

l

� �2
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a

� �2" #( )1=2
: ð16Þ
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The profile of the velocity potential can be rewritten as #ffðx; zÞ ¼
P1

n¼0Ane
�qnz cosðnpx=LÞ,

from which

@ #ff x; zð Þ
@z

�����
z¼0

¼ �
X1
n¼0

Anqn cos
npx
L

: ð17Þ

From equations (6), (10) and (12), the boundary condition of the velocity potential on the
web surface can be written as

@ #ff x; zð Þ
@z

�����
z¼0

¼ �i
2p
l
ðVair � cÞ #ww sin

px
L
: ð18Þ

Therefore,

X1
n¼0

Anqn cos
npx
L

¼ i
2p
l

Vair � cð Þ #wwsin
px
L
: ð19Þ

The coefficients An are evaluated using the Fourier transform formula as

Ao ¼ i
4ðVair � cÞ #ww

lqo
; ð20Þ

and if n � 1,

An ¼ �i
8ðVair � cÞ #ww
ðn2 � 1Þlqn

for even n; andAn ¼ 0 for odd n: ð21Þ

The velocity potential can be written as

fðx; y; z; tÞ ¼ i
4ðVair � cÞ #ww

l
1

qo
�
X1
n¼1

2

ð4n2 � 1Þq2n
e�q2nzcos

2npx
L

" #
eið2p=lÞ ct�yð Þ: ð22Þ

2.5. Aerodynamic Loading

The air pressure on the positive z-side surface is determined by substituting equation (22)
into the Bernoulli, equation (8), yielding,

pþ ¼ �
8prðVair � cÞ2 #ww

l2
1

qo
�
X1
n¼1

2

ð4n2 � 1Þq2n
cos
2npx
L

" #
eið2p=lÞðct�yÞ: ð23Þ

The air pressure on the other side of web is p� ¼ �pþ, so that �pþ þ p� ¼ �2pþ.

2.6. Out-of-plane Motion of the Web

From equations (7) and (23), we obtain

A sin
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L

� i 2mUweb
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lL

þ 2Txy
2p2

lL

� �
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þ
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ð4n2 � 1Þq2n

" #
¼ 0:

ð24Þ
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If we multiply each term with the assumed mode shape sinðpx=LÞ and integrate over
05x5L, the above equation becomes

Aþ
64

l2
rðVair � cÞ2

1

qo
þ
X1
n¼1

2

ð4n2 � 1Þ2q2n

" #
¼ 0: ð25Þ

Note that the Coriolis term @2w=@t @x and the term @2w=@x @y dropped out by forcing the
symmetric deflection shape sinðpx=LÞ to be applied. Define the reference speed as
c2o � p2Dx=mL2, and introduce the following nondimensional parameters: %cc � c=co,
L � l=2L, M � 2rL=p m, and %TT � TxL

2=p2Dx. Then equation (25) becomes

%cc2 � Bþ
8

pL
Mð %VVair � %ccÞ2

1

qo
þ
X1
n¼1

2

ð4n2 � 1Þ2q2n

" #
¼ 0; ð26Þ

where

B ¼ ð1þ %TT � %UU
2

webÞL
2 þ

2Dxy

Dx
þ

Dy

Dx
L�2 þ

Ty

Tx

%TT : ð27Þ

The cross-flow velocity Vair is much lower than the sonic speed a for typical paper mills,
and the experiment to be discussed later was done in the range of Vair=a50�1. The wave
speed does not exceed the air speed. Therefore, ðVair � cÞ=a51 so that

q2n ’
p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ L�2

p
for n � 0: ð28Þ

With this condition, equation (26) becomes

1þ
8sM

p2

� �
%cc2 �

16sM

p2
%VVair %ccþ

8sM

p2
%VV
2

air � B ¼ 0; ð29Þ

where

s ¼ Lþ
2

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L�2

p þ
2

225
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ L�2

p þ . . . ’ Lþ
2

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L�2

p : ð30Þ

The solution to the quadratic algebraic equation (29) is

%cc ¼
8sM %VVair � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8sM %VV

2

air þ ðp2 þ 8sMÞB
q

p2 þ 8sM
: ð31Þ

The system becomes unstable when the phase speed is a complex number because of its
negative imaginary component.

2.7. Critical Conditions

The critical flow speed is determined from the condition at which the term inside the
square-root sign in equation (31) becomes zero, i.e., for

%VV
2

air ¼ 1þ
p2

8sM

� �
B ¼ 1þ

p2

8sM

� �
ð1þ %TT � %UU

2

webÞL
2 þ

2Dxy

Dx
þ

Dy

Dx
L�2 þ

Ty

Tx

%TT

	 

: ð32Þ

The nondimensional phase speed of flexural waves in the web at and above the critical
condition is the real part of %cc, that is %ccR ¼ 8sM %VVair=ðp2 þ 8sMÞ. There are an infinite
number of critical flow speeds, corresponding to the infinite number of possible
wavelengths. We need to find the values of L at which the critical flow speed becomes
minimum. It is more appropriate to define the term ‘‘critical flow speed’’ as the minimum
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possible value of flow speed which satisfies equation (32). The term ‘‘critical’’ will be used
accordingly in the remaining parts of this paper. Flutter frequencies at, and higher than,
the critical flow speed are obtained by

%ff � f
2L

co
¼

%ccR

L
¼

8sM

ðp2 þ 8sMÞL
%VVair: ð33Þ

It must be noted that the flutter frequency is not linearly proportional to the flow speed.
The variable s in equation (33) is a function of wavelength, which in turn depends on flow
speed. In the supercritical range of flow speed, both the wavelength and the flutter
frequency are double-valued functions of flow speed.

2.8. Approximation of the Critical Flow Speed: Closed-Form Solution

It is not convenient to use equation (32), because it requires us to find the value of the
critical wavelength, i.e., we need to find the condition at which the flow speed expressed by
equation (32) becomes minimum. This section discusses an approximate method of
determining the critical flow speed. The resulting equation of the critical flow speed is a
closed-form solution.
The central region of a stretched free span of web is under compressive cross-stress.

The web can be corrugated due to buckling due to a compressive loading. Shelton
(1991) showed that the wavelength of the corrugation is l=2L ¼
½1þ 12sxð1� n2ÞðL=hÞ2=p2E��1=4, that is,

L ¼ ð1þ %TTÞ�1=4; ð34Þ

where it was assumed that the material is isotropic so that the subscript on bending
stiffness was dropped. If we assume that the wavelength of a fluttering web is the same as
that predicted by the above equation, equation (32) becomes an explicit equation for the
nondimensional critical flow speed.

3. EXPERIMENTS AND COMPARISON WITH THEORY

3.1. Experimental Set-Up

A web material was mounted in a subsonic wind tunnel as shown in Figure 5. The web was
in stationary position (Uweb ¼ 0). The wind tunnel is a suction-type, open-circuit design.
The test section is 0�622m (24�5 in) wide and 0�413m (16�25 in) high. The flow speed can be
as high as about 70m/s, but the experiment was done mostly at speeds lower than 30m/s.
The downwind edge of the tested web was free, while all the other sides were fixed. Web
tension was applied in the cross-flow direction to simulate the machine-direction tension.
For uniform tension distribution, the upwind edge area of the web had holes and parallel
cuts, and the upwind clamp was released and fastened again each time the tension was
changed. One type of paper and three types of plastic webs were tested. Test variables
included web material (mass density, modulus of elasticity, thickness), web tension, and
flow speed. For paper web, the effect of web length (flow-direction dimension, b) was also
examined. Straight lines were drawn on the web, 25�4mm apart in both tension and flow
directions, for better observations of web motion.
Modulus of elasticity of the paper web was measured by a vibration testing. A strip of

paper was attached to a rigid steel structure near the ceiling, and tension was applied and
adjusted by a mass (steel disks). The mass was impacted in the vertical direction, and its
vibration was measured by a proximity sensor. The modulus of elasticity could be
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Figure 5. Schematic of the test setup mounted in a wind tunnel.
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calculated from the equation of natural frequency, fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=mL

p
=2p, where E is the

modulus of elasticity, A the cross-sectional area of the strip, L the length of the strip, and
m the mass of the disks. The test was repeated for various values of mass. The modulus of
elasticity of plastic webs was determined with the web mounted in the wind tunnel by
measuring the amount of stretch at various loads. The amount of stretch was large enough
for measuring the strain with a ruler with a reasonable accuracy. Material properties of the
tested webs are summarized in Table 1.
We tried to measure web deflection using an optical sensor. The sensor had a

rectangular rod shape with a cross-section of 6� 19mm. After the first flow test, we
abandoned the use of the optical sensor because it affected web behavior; the downwind
edge deflected towards the sensor and fluttered severely in the entire range of flow speed.
Instead, we used a stroboscope to find the flutter patterns, the frequencies, and the
amplitudes. This was not an accurate method of determining the flutter amplitude, but it
worked reasonably well for the determination of the critical flow speed because the flutter
amplitude changed drastically when the flow speed was near the critical value.

3.2. Observations

As the flow speed was increased from zero, the downwind free edge of the web started to
vibrate randomly with small amplitudes. The amplitude grew with flow speed, and above a



Table 1

Properties of web materials and test conditions

Paper Plastic 1 Plastic 2 Plastic 3

m (kg/m2) 0�058 0�023 0�120 0�240
E (MPa) 6800 50 50 50
L (m) 0�223 0�223 0�223 0�223
b (m) 0�30, 0�38, 0�46 0�46 0�46 0�46
h (mm) 76 20 102 203
T (N/m) 9–70 35–70 18–70 9–70

Figure 6. Typical amplitude response.

VIBRATION OF THIN FILMS 999
critical value of air speed the vibration became violent and steady, as indicated in Figure 6.
We could determine the critical flow speed by measuring vibration amplitude or by
detecting the oscillation frequency. In most cases, the transition occurred so suddenly that
the critical flow speed could be determined with little uncertainty even if a crude method
was used to measure the vibration amplitude. The transition from erratic vibration to
steady vibration made it possible to determine the threshold condition by measuring the
frequencies. Once the web became unstable, the flutter frequency tended to increase with
flow speed.
The observed vibration was in the form of waves travelling in the flow direction. With

the stroboscope frequency a little lower than the flutter frequency, the waves appeared to
move downstream; while with higher strobe-light frequency, the waves appeared to move
upstream. Therefore, the waves were propagating in the direction of the air-flow. Even
near the downwind free edge, the waves appeared to move in the flow direction only; but
the amplitude at the downwind edge was much larger than at the upstream one.
The observed vibration of the downwind free edge (and any straight line in the

tension direction) was of normal mode. Up to a certain value of the flow speed in the
supercritical condition, the zero-node pattern was observed (Figure 7). When the flow
speed is much higher than the critical value, the downwind edge vibrated with higher
modes (more nodes and higher frequencies). For given flow speed, only a single mode
vibration occurred in steady manner, and the pattern of deflection could be observed very
clearly.
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In most cases, the critical speed of air-flow increased with web tension. The effect of web
length (flow-direction dimension, b), however, was not evident in the range of test
conditions. We could not separately test the effects of mass density and bending rigidity of
the web because it was impossible to change one of them without affecting the other.

3.3. Wavelength at Critical Flow Speed

We attempted to observe the wavelengths near the critical flow speeds. Unlike the
measurement of critical flow speeds and flutter frequencies, however, measurement of
wavelength could not be done accurately enough to discuss the data in detail. Figure 8
illustrates the theoretical relationship between the critical flow speed and the wavelength
for two different values of web tension for the paper web tested. The solid line is from
equation (32) without any assumption for the wavelength; the symbol is from the same
equation but with the critical wavelength determined by equation (34). In both cases it was
assumed that Ty ¼ 0. It is seen that the simple, closed-form solution yields nearly the same
result as the equation which requires a more complicated procedure for determining the
critical condition. Figures 9–11 are for plastic films of three different thicknesses. The
common shape of the curves implies that, near the critical condition, even a large error in
the prediction of the critical wavelength causes a relatively small error in the critical flow
speed.
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3.4. Critical Flow Speed

The measured values of the critical flow speed for the paper web are compared with the
predicted values in Figure 12. The solid line in the figure is based on equation (32) without
any assumption for the wavelength, and the dotted line is based on the wavelength given
by equation (34). The two prediction curves fall on each other for the paper web tested.
For the plastic materials tested, the two equations predict slightly different values of the
critical flow speeds, but the differences are not significant (Figure 13). In general, the
theories tend to underpredict the critical flow speed.
All test data are plotted against the approximation equation in nondimensional form in

Figure 14. It appears that even though the theory underpredicts the critical flow speeds,
the errors are not very large and the predicted trend is the same as measured.
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3.5. Flutter Frequency

The measured dominant flutter frequencies of the paper web at T ¼ 17�2N/m are
compared with the predicted values in Figure 15. Note that, in this figure and other
frequency plots, only the values near the experimental critical conditions are shown; the
simple stability analysis in this paper is not suitable for predicting behavior of the web in
post-critical conditions. The measured flutter frequency tended to increase with the flow
speed. Note that the theory indicates that, at each flow speed, there are two possible values
of flutter frequency. The left end of the curve indicates the critical condition: the critical
flow speed and the corresponding value of frequency. It is not certain whether the scatter
in the data in Figure 15 indicates experimental errors or two different trends implied by the
theory. Unless we can relate each data point to one of the upper and lower prediction lines,
we cannot plot a nondimensional frequency curve similar to that for critical flow speed
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shown in Figure 14. Additional frequency data are compared with theory in Figure 16.
For Plastic 1 which is 20mm in thickness, the measured values of the frequency fall
between the upper and lower prediction curves (Figure 17). For thicker plastic films, it
appears that the measured frequencies are close to the upper prediction curves (Figures 18
and 19).

4. DISCUSSION

One of the assumptions in the analysis is that the flow-direction dimension of the web is
much larger than the wavelength. In our experiments, 3� b=l � 8 for paper, and 5�
b=l � 18 for plastic webs. These values might not be large enough to justify the
assumption and could be one possible cause of errors. The flow boundary conditions at
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x ¼ 0 and x ¼ L of the test set-up are not the same as those of the analytical model. This
difference might be another cause of discrepancy between the theory and the experiments.
The frequency of vortex-shedding from the web-holding jig was always much higher

than the observed flutter frequency. Therefore, the observed flutter phenomenon was not
due to the vortex shedding of the air flow.
Our experimental observations indicated that edge flutter of flexible materials

such as paper and plastic films is not due to the fluid–structure interaction at the trailing
free edge. Using strobe light, edge flutter was seen to be a travelling wave phenomenon,
and waves in the flow direction dominate the phenomenon. Therefore, for typical web
handling applications, the Kutta condition is not as important as in some other
fluid–structure interaction phenomena where the fluid flow near the trailing edge plays a
crucial role.
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5. CLOSING REMARKS

The study of edge flutter expands previous studies of two-dimensional waves to a more
realistic three-dimensional problem. The theory and the experiments clearly showed that
there is an inherent mechanism of web instability, contrary to the belief of many engineers
who thought that edge flutter occurs mainly due to turbulence of the air-flow.
Experimental results indicate that the analysis underpredicts the critical flow speed.

However, it appears that the theory can be used as a means of predicting the possibility of
harmful edge-flutter problems. The simple, closed-form solution of the critical flow speed
suggested in this paper will be very useful for this purpose.
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Figure 19. Flutter frequency of Plastic 3: *, T ¼ 8�6N/m, measured; &, T ¼ 25�7N/m, measured; � ,
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Figure 18. Flutter frequency of Plastic 2: *, T ¼ 25�7N/m, measured; &, T ¼ 42�9N/m, measured; � ,
T ¼ 51�5N/m, measured; +, T ¼ 68�6N/m, measured; }, T ¼ 25�7N/m, predicted; } T ¼ 42�9N/m,

predicted; }-, T ¼ 51�5N/m, predicted; �����, T ¼ 68�6N/m, predicted.
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APPENDIX: NOMENCLATURE

a speed of sound in air
b flow-direction dimension of tested web, b ¼ d=2
c phase speed of waves in the web
co reference speed, co � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx=mL2

p
D flexural rigidity of web, D � Eh3=12ð1� n2Þ
d width of web, d ¼ 2b
E modulus of elasticity of web
f flutter frequency
G shear modulus of web
h thickness of web
i

ffiffiffiffiffiffiffi
�1

p
k wavenumber of the y direction (cross-machine direction or flow direction)

waves
L web span (distance between two supports)
M mass ratio, M � 2 rL=pm
m mass per unit area of web
p aerodynamic pressure on the web surface (subscript� indicates upper or lower

surface)
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Uweb translation speed of web
%UUweb nondimensional speed of web, %UUweb � Uweb=co
T tension (tensile force per unit width of web) (subscript x or y indicates

direction)
Tm apparent tension, Tm � Tx �mU2

web
%TT tension parameter, %TT � TmL

2=p2Dx

t time
Vair flow speed in the y direction (cross-machine direction)
%VVair nondimensional flow speed, %VVair � Vair=co
w out-of-plane deflection of web (in the z direction)
’ww vibration velocity of web
#ww out-of-plane deflection coefficient of web
x longitudinal direction (machine direction) coordinate
y cross-machine direction (flow direction) coordinate
z out-of-plane direction (perpendicular to web surface) coordinate
L nondimensional wavelength, L � l=2L
l wavelength of the y direction waves
n poisson’s ratio of web material
r density of air
f velocity potential
s stress (subscript x or y indicates direction)
o angular frequency

Subscripts
crit critical value
I imaginary component
R real component
x machine direction
y cross-machine direction
+ upper surface of web (z > 0)
– lower surface of web (z50)

Superscript
* normalized coordinate
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